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Abstract. Sonic logging measurements in ice core boreholes allow for the determination of the

velocities of the elastic waves used as a proxy for the variation of ice polycrystal anisotropy due

to the texture (or fabric) evolution with depth. This needs an inversion from the velocities deduced

from the measured times of flight and the anisotropy of the ice polycrystal where the elastic waves

have propagated. A classical model used in glaciology is based on the so-called velocity, or slowness,5

average method. Namely the elastic velocities in a polycrystal are calculated considering the average

of the velocities, or the average of the slownesses, along the ray path from the emitter to the receiver

of the logger. There are several pitfalls in this approach and it is the scope of the present paper to

illustrate them and to propose a consistent inversion procedure. This is done by deriving the phase

velocities in the effective medium obtained by averaging the elastic tensor.10

1 Introduction

Wave propagation in glaciology most often is regarded in the context of seismic waves, e.g. (Kohnen,

1974; Blankenship et al., 1987). More recently, the interest has been renewed with the idea of using

in situ velocity measurement in boreholes as an alternative to usual thin section analysis. A first

campagne at Dome C has been performed using a classical sonic logger (Gusmeroli et al., 2012).15

Sonic logging is based on the measure of the times of flight of elastic waves propagating over a short

distance (typically few meters). This campagne has revealed the sensitivity of the elastic velocities on

the degree of anisotropy of ice polycrystals with a cluster-type texture (c-axis orientation clustered

around the vertical direction), that varies with depth. Nevertheless, the changes in the velocities

remain small, which motivates the development of accurate models needed to make the inversion20

from the elastic velocities to the local ice anisotropy.

In a previous paper (Maurel et al., 2015), we applied a classical model for wave propagation in

polycrystals to the particular textures as found in ice recovered from deep ice cores, namely clusters

(with vertical transverse isotropy, VTI) and girdles with horizontal transverse isotropy, HTI. The
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model relies on the wave equation being written using the effective elasticity tensor. This latter25

is the ensemble average of the elasticity tensors for all possible realizations of the crystallographic

orientations of the grains within the polycrystal. Basically, let us start from the wave equation written

for a particular realization

ρω2ua +
∂

∂xb
cabcd

∂

∂xc
ud = 0, (1)

with cabcd the elasticity tensor being space dependent (from grain to grain), and ua,d the compo-30

nent of the elastic displacement along the axis ea,d (and a, d takes the values 1,2,3); also, in the

above equation, repeated indices means summation (Einstein convention). The most representative

realization corresponds to the wave equation in an homogeneous medium

ρω2ua + 〈cabcd〉
∂2

∂xb∂xc
ud ' 0, (2)

where we have expand cabcd = 〈cabcd〉+ δcabcd, with 〈cabcd〉 the ensemble average of cabcd. Here35

δcabcd is a measure of the changes in anisotropy from grain to grain, with typical relative amplitude

ε= δc/c being assumed to be small. Because 〈δcabcd〉= 0 by construction, the model is accurate up

to ε2.

Starting in the 1960s, these methods, often referred as stochastic methods, have being developed

(Keller, 1964; Karal and Keller, 1964) and preferred to the methods based on spatial averages. These40

latter are based on the intuitive argument that the time of flight of the wave through successive grains

along the ray path is the correct "extensive" quantity to be considered. If one considers that the grains

have roughly the same size, this is equivalent to average the inverse of the velocities, called slowness

(and these methods are called "slowness average methods"). Although it is sometimes thought that

ergodicity ensures the two approaches to be equivalent, the slowness average methods have at least45

two disadvantages: first, they do not rely on a rigorous mathematical formalism, and secondly, there

is no guaranty that the obtained velocities satisfy the expected anisotropy of the polycrystal at large

scale.

This is the main subject of the present paper to illustrate the unphysical results that such slowness

average methods can give, and to quantify the resulting error for practical situations. To that aim, we50

consider the simplest case of cluster textures in ice. Clusters have vertical transverse isotropy, which

means that the horizontal plane is isotropic. We show that the slowness average method predicts that

a wave propagating along the vertical axis is associated to two different shear velocities, which is

clearly unphysical since the polarizations of the shear waves belong to the plane of isotropy.

Although two shear velocities should be found, Bennett obtained a unique shear velocity using55

the slowness average method for clustered textures (Bennett, 1968), and this result is largely used

in the community of glaciology, see e.g. Vélez et al. (2016). It is not possible to ignore Bennett’s

calculations and it is the subject of a second part in this paper: we show that Bennett uses an unjus-

tified qualitative argument which leads to erroneous expressions of the shear velocities in single ice.
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This error has nothing to do with the average method that he uses latter; the error really occurs at the60

starting point of his calculation.

When needed, the values of the elastic constants for ice single crystals are taken from Bennett

(1968):

Ice single crystal





A= 14.06× 109 N.m−2, C = 15.24× 109 N.m−2, L= 3.06× 109 N.m−2,

N = 3.455× 109 N.m−2, F = 5.88× 109 N.m−2, ρ= 917 kg/m3.

(3)

2 Classical results on polycrystal effective anisotropy and wave propagation in anisotropic65

media

In this section, we just recall classical results on the elasticity tensor of polycrystals, regarded at the

scale of many grains as an equivalent "single" crystal, and on the propagation of elastic waves in

single crystal. This allows to introduce the notations that will be used in the sequel, and to clarify in

a self consistent way some properties that will be needed.70

2.1 Characteristics of the polycrystal resulting from anisotropy from grain to grain

We consider that each grain within the polycrystal is composed of the same single crystal with

hexagonal symmetry being characterized by its elasticity tensor c0ijkl, written as C0 in the Voigt’s

notation

C0 =




A A− 2N F 0 0 0

A− 2N A F 0 0 0

F F C 0 0 0

0 0 0 L 0 0

0 0 0 0 L 0

0 0 0 0 0 N




. (4)75

This corresponds to an elasticity tensor c0ijkl being expressed in the frame of its principal axes, with

the c-axis being oriented along e3, hereafter referred as the vertical axis. We use the elasticity tensor

in Voigt’s notation (Voigt, 1928), CIJ with the standard correspondences





cijk`→ CIJ ,

for (i, j)→ I, (k, l)→ J,

and (1,1)→ 1,(2,2)→ 2,(3,3)→ 3,

(3,2),(2,3)→ 4,(3,1),(1,3)→ 5,(1,2),(2,1)→ 6.

(5)

Next, for an arbitrary direction of the c-axis (Fig. 1), namely80

ĉ = (sinθ cosϕ,sinθ sinϕ,cosθ), (6)
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the elasticity tensor cijkl is deduced from c0ijkl following

cabcd = RiaRjbRkcRldc
0
ijk`, (7)

with R the rotation matrix

R≡




cosθ cosϕ cosθ sinϕ −sinθ

−sinϕ cosϕ 0

sinθ cosϕ sinθ sinϕ cosθ


 , (8)85

and obviously, cabcd depends on (θ,ϕ) which are the usual angles in spherical coordinates.

Figure 1. Usual spherical angles (ϕ,θ) used for the orientation of the c-axis, (ĉ is an unitary vector).

The anisotropy at the macroscopic scale (at the scale of many grains) result from the many (or few)

possible orientations of the c-axis in each grain. This distribution of c-axis is defined by a probability

distribution function p(θ,ϕ), and p(θ,ϕ) has to satisfy
∫

dΩ p(θ,ϕ) = 1, with dΩ = sinθ dθdϕ. (9)90

When needed, the elasticity tensor ceff
ijkl of the polycrystal can be calculated by means of the average

of the elasticity tensors of the grains following

ceff
ijkl =

∫
dΩ p(ϕ,θ)cijkl, Ceff

IJ =
∫

dΩ p(ϕ,θ)CIJ , (10)

with the same index convention, Eq. (5), between the elasticity tensor ceff
ijkl and the Voigt matrix

Ceff
IJ .95

2.2 Wave propagation – The Christoffel equation

The propagation of monochromatic waves of frequency ω in single crystals is described by the wave

equation

ρω2ua + cabcd
∂2

∂xb∂xc
ud = 0. (11)
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with the same notations as in Eq. (1). Denoting k = k(n1,n2,n3) the wavevector (k is the wavenum-100

ber), the elastic displacement reads ua = Uae
ik(n1x1+n2x2+n3x3) leading to ρω2Ua−k2cabcdnbncUd =

0. This system of equations admits non zero solution for (U1,U2,U3) if the discriminant of the matrix

ρω2δad− k2cabcdnbnc vanishes, leading to a dispersion relation D(ω,k) = 0. One gets the disper-

sion relation in the classical form of the Christoffel equation introducing the phase velocity V = ω/k,

thus105

Det
[
ρV 2δad− cabcdnbnc

]
= 0. (12)

The Christoffel equation admits in general three solutions V = VP ,VSH ,VSV which correspond to

one longitudinal wave and two transverse waves.

It is important to stress at this point that the three values of V 2 being the eigenvalues of the matrix

cabcdnbnc/ρ, they do not depend on the particular frame (e1,e2,e3) used to express cabcd. To the110

contrary, the eigenvectors (U1,U2,U3) associated to the eigenvalues obviously depend on the frame

where they are expressed.

3 On the non pertinence of averaging the acoustical slowness or the velocities

In this section, we compare the elastic velocities obtained from the slowness average method, as

used in Bennett (1968); Gusmeroli et al. (2012); Vélez et al. (2016), and the elastic velocities ob-115

tained from the effective medium theory (Maurel et al., 2015). Omitting the distinction between

slowness/velocity and compliance/elasticity tensors, which remains incidental at this stage, the two

approaches are as follow

Velocities from the velocity averaging method

First, solve the Christoffel equation for given (θ,ϕ) :

V (θ,ϕ) = VP ,VSV ,VSH are the roots of Det
[
ρV 2δil− cijklnjnk

]
,

Then compute the average of the slowness, from which: V av =
[∫

dΩ p(θ,ϕ)V −1(θ,ϕ)
]−1

(13)

and we will see that this may lead to inconsistent results. Alternatively,120

Velocities of the effective medium

First, compute the effective elasticity tensor: ceff
ijkl =

∫
dΩ p(θ,ϕ)cijkl,

Then, solve the Christoffel equation:

V = V eff
P ,V eff

SV ,V
eff
SH are the roots of Det

[
ρV 2δil− ceff

ijklnjnk

]
,
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(14)

and we will see that this leads to consistent results.

Below, we report examples of textures with Vertical Transverse Isotropy (VTI), see e.g. Fig. 3,

for which velocity or slowness averaging methods lead to inconsistent results. Vertical transverse

isotropy means that the horizontal plane (transverse to the vertical direction) is a plane of isotropy.125

This is true for any mechanical response of a polycrystal sample (at least in the elastic regime) and

this has to be true for the response of the polycrystal to an incident wave. This is because a wave

produces nothing else than a time periodic elastic stress. Now, if one considers the propagation of a

wave along the vertical direction e3, the shear displacements are in-plane displacements in the plane

(e1,e2), that is in the plane where the response of the polycrystal is isotropic. Thus, there is a unique130

shear velocity in this particular case (VSV = VSH ).

Two examples of VTI structures will be presented and only the case of a propagation along e3 is

considered. We start by collecting some common results for this particular configuration (propaga-

tion along the vertical direction in a VTI structure) both using velocity averaging method and effec-

tive medium theory, Section 3.1. Next, two examples are given for specific VTI structure, Section135

3.2. The first structure is quite artificial, with a c-axis having a unique θ = θ0 value (and ϕ ∈ [0, 2π]),

but it allows for explicit expressions of the velocities in both approaches. It could be seen as a girdle

with vertical transverse isotropy, (Azuma and Goto-Azuma, 1996) with a single zenith angle, Fig.

3(a). The second example corresponds to a cone representative of clustered textures measured along

ice cores (Gusmeroli et al., 2012; Diez and al., 2015), with θ ∈ [0, θ0] (and ϕ ∈ [0, 2π]) and it is140

studied numerically, Fig. 3(b).

3.1 The case of wave propagation along the vertical axis in a polycrystal with VTI

We collect here the simplifications which occur when we consider a wave propagating along the

vertical axis, thus k = k(0,0,1), in a polycrystal with VTI, Fig. 3. The VTI structures have in com-

mon to allow for ϕ ∈ [0, 2π], resulting in a distribution of c-axes given by probability distribution145

functions of the form

p(θ,ϕ) =
Pθ0(θ)

2π
, with

π/2∫

0

dθ sinθPθ0(θ) = 1. (15)
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3.1.1 Velocities from the slowness averaging method

In this method, we first derive the velocities in a grain, and this is done for a wave propagating along150

e3. Thus, the Christoffel equation, Eq. (12) with nb = δb3 (same for nc) simplifies to
∣∣∣∣∣∣∣∣

ρV 2−C55 −C45 −C35

−C45 ρV 2−C44 −C34

−C35 −C34 ρV 2−C33

∣∣∣∣∣∣∣∣
= 0, (16)

where CIJ is derived from cijkl in Eq. (7), for a c-axis given by Eq. (6)





C33 =Asθ4 + 2(2L+F )sθ2cθ2 +Ccθ4,

C44 = (A+C − 2F )sθ2cθ2sϕ2 +L
[
sϕ2(cθ2− sθ2)2 + cθ2cϕ2

]
+Nsθ2cϕ2,

C55 = (A+C − 2F )sθ2cθ2cϕ2 +L
[
cϕ2(cθ2− sθ2)2 + cθ2sϕ2

]
+Nsθ2sϕ2,

C34 =−sϕsθcθ
[
Asθ2−Ccθ2 + (2L+F )(1− 2sθ2)

]
,

C35 =−cϕsθcθ
[
Asθ2−Ccθ2 + (2L+F )(1− 2sθ2)

]
,

C45 = sϕcϕsθ2
[
(A+C − 2F )cθ2 +L(1− 4cθ2)−N

]
,

(17)

and we have used the notations cϕ≡ cosϕ, sϕ≡ sinϕ, sθ ≡ sinθ and cθ ≡ cosθ.155

The discriminant, Eq. (22), can be calculated and we get the roots ρV 2





ρV 2 =
(
Lcθ2 +Nsθ2

)
,

(ρV 2)2 +
(
Asθ2 +Ccθ2 +L

)
ρV 2−F 2sθ2cθ2 +ACsθ2cθ2 +ALsθ4 +CLcθ4− 2FLsθ2cθ2 = 0.

(18)

The first root correspond to a pure shear wave polarized in a direction perpendicular to both k and

ĉ, referred as SH-wave. The two roots of the second equation are associated to so-called quasi shear

and quasi longitudinal waves, being coupled. The directions of polarization of the three waves are160

orthogonal (because the discriminant is associated to a symmetric matrix) but the quasi longitudinal

wave is in general not along e3 and the quasi shear wave is in general not in the (e1,e2) plane. More

explicitly, the three velocities read




ρV 2
SH = Lcθ2 +Nsθ2,

ρV 2
SV =

1
2

[
C +L+ (A−C)sθ2−

√
D
]
,

ρV 2
P =

1
2

[
C +L+ (A−C)sθ2 +

√
D
]
,

with D ≡
[
Asθ2−Ccθ2

][
Asθ2−Ccθ2 + 2L(cθ2− sθ2)

]
+ 4sθ2cθ2(F 2 + 2FL) +L2.

(19)

These are the expressions of the velocities in a single grain with a c-axis forming an angle θ with e3,165

Fig. 2. As expected from Section 2.2, the roots V 2 do not depend on ϕ, since the unique physical

angle is θ formed by ĉ and k (ϕ is linked to the particular frame that is considered, and it will appear

in the directions of the polarization of the elastic waves only).
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Figure 2. In a single crystal, the sound velocities depend only on θ.

The second step in the velocity averaging method can be applied

1
V av(θ0)

=

2π∫

0

dϕ

π/2∫

0

dθ sinθ p(θ,ϕ)V −1(θ,ϕ) =

π/2∫

0

dθ sinθ Pθ0(θ)V −1(θ), (20)170

for V = VSH ,VSV ,VP taken from Eqs. (19). These last averages depend further on Pθ0(θ).

3.1.2 Velocities of the effective medium

With a probability function given by Eq. (15), the effective medium is characterized by a Voigt

matrix

Ceff
IJ(θ0) =

2π∫

0

dϕ
2π

π/2∫

0

dθ CIJ(θ,ϕ)sinθ Pθ0(θ). (21)175

The Voigt matrixCIJ(θ,ϕ) has 21 coefficients, among which the 6 coefficients given in Eq. (17) (the

other coefficients can be found in Maurel et al. (2015), Eqs. (3.6)-(3.7) in this reference). Averaging

CIJ(θ,ϕ) over ϕ ∈ [0, 2π] makes 15 of them to vanish, and the resulting Voigt tensor has VTI

symmetry, as expected, see Eqs. (A2)-(A3) in Maurel et al. (2015). The remaining integrations over

θ depend on Pθ0(θ).180

Next, the velocities of the elastic waves propagating along the axis e3 can be derived by solving

the Christoffel equation, Eq. (12) with cabcd→ ceff
ijkl. We get

∣∣∣∣∣∣∣∣

ρV 2−Ceff
44 (θ0) 0 0

0 ρV 2−Ceff
44 (θ0) 0

0 0 ρV 2−Ceff
33 (θ0)

∣∣∣∣∣∣∣∣
= 0, (22)

and we report below the intermediate result on C33 and C44 after ϕ-averaging



〈C33〉ϕ(θ) =Asθ4 + 2(2L+F )sθ2cθ2 +Ccθ4,

〈C44〉ϕ(θ) = Lcθ2 +Nsθ2,
(23)185

afterwards

Ceff
IJ (θ0) =

∫
dθ 〈CIJ〉ϕ(θ)sinθ Pθ0(θ). (24)
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The resulting effective velocities read




V eff
P =

√
Ceff

33 (θ0)/ρ,

V eff
S =

√
Ceff

44 (θ0)/ρ.
(25)

The longitudinal wave has a velocity associated to the vibration along e3; more importantly for the190

present demonstration, the two transverse waves have vibrations in the (e1,e2) plane and they are

associated to the same velocity.

3.2 Examples of the inconsistency in the slowness average method for polycrystals with VTI

3.2.1 Example 1: Girdle with vertical transverse isotropy and single θ0 value

The first configuration is shown in Figure 3. It consists in a situation where all the grains within195

the polycrystal have the same angle θ = θ0 but different ϕ randomly distributed in [0,2π]. In this

configuration, we have

Pθ0(θ) =
δ(θ− θ0)

sinθ0
. (26)

(a) (b)

Figure 3. First configuration of thin girdle with Vertical Transverse Isotropy (a) typical c-axis ĉ =

(sinθ0 cosϕ,sinθ0 sinϕ,cosθ0) within one grain, θ0 is fixed and ϕ varies randomly from grain to grain. (b)

Resulting VTI texture of the polycrystal at the macroscopic scale. ĉeff is the effective c-axis.

The velocities obtained from the slowness average method, Sec. 3.1.1, are obtained with V in Eqs.

(19) and Eqs. (20) and (26), leading to200




V av
SH =

√
Lcθ20 +Nsθ20

ρ
,

V av
SV =

√
C +L+ (A−C)sθ20 −

√
D

2ρ
,

V av
P =

√
C +L+ (A−C)sθ20 +

√
D

2ρ
,

with D ≡
[
Asθ20 −Ccθ20

][
Asθ20 −Ccθ20 + 2L(cθ20 − sθ20)

]
+ 4sθ20cθ20(F 2 + 2FL) +L2.

(27)
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These velocities are reported in Figs. 6 (red curves) and they will be commented latter.

We now derive the two shear and transverse velocities of the effective medium, Sec. 3.1.2, which

are given by Eqs. (25) with Ceff
IJ (θ0) =

∫
dθ 〈CIJ〉ϕ(θ)sinθ Pθ0(θ), and Eqs. (23) and (26). We get





V eff
P =

√
1
ρ

[Asθ40 + 2(2L+F )sθ20cθ20 +Ccθ40],

V eff
S =

√
1
2ρ

[(A+C − 2F )sθ20cθ20 +L(4sθ40 − 5sθ20 + 2) +Nsθ20],

(28)205

and these velocities are reported in black lines in Figs. 5 (they will be commented together with the

results of the clustered texture with opening angle θ0).

3.2.2 Example 2: the clustered texture with opening angle θ0

This texture is shown in Fig. 4. It corresponds to

Pθ0(θ) =
Hθ0(θ)

1− cosθ0
, (29)210

where Hθ0 is the rectangular function, equals unity for 0≤ θ ≤ θ0, zero otherwise.

(a) (b)

Figure 4. Second configuration, the usual clustered texture, with Vertical Transverse Isotropy (a) typical c-

axis ĉ = (sinθ cosϕ,sinθ sinϕ,cosθ) within one grain, θ varies in [0,θ0] and ϕ varies randomly from grain

to grain. (b) Resulting clustered, VTI, texture of the polycrystal at the macroscopic scale. ĉeff is the effective

c-axis.

The velocities (V av
SH ,V

av
SV ,V

av
P ) in the slowness average method, Sec. 3.1.1, cannot be calculated

analytically in this case. The average on θ in Eq. (20) is performed numerically (with Eqs. (19) and

(29)).
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The velocities of the effective medium (V eff
S ,V eff

P , Sec. 3.1.2) are calculated as previously, using215

Eqs. (23) to (25), with Eq. (29), and we get

Cluster





V eff
S =

√
(L+N)

2ρ
+

[2(A+C)− 4F − 3L− 5N ]
30ρ

X − [(A+C)− 2(2L+F )]
10ρ

Y

V eff
P =

√
A

ρ
+

[−7A+ 3C + 4(2L+F )]
15ρ

X +
[A+C − 2(2L+F )]

5ρ
Y

(30)

with X ≡ 1 + cosθ0 + cos2 θ0 and Y ≡ cos3 θ0 + cos4 θ0. These values are reported in black lines in

Fig. 6.

(a) (b)

Figure 5. Illustration of the inconsistency of the slowness average method for the girdle texture with single

zenith value θ0, for ice (a) and for zinc (b). The wave propagation is along e3 = ĉ (Fig. 4) for which VS =

VSH = VSV . Black curves show the velocities V eff
P and V eff

S of the effective medium as a function of θ0, Eqs.

(30); Red lines show the velocity V av
P and the two -unphysical- velocities of the S-waves V av

SH ,V av
SV ; dashed red

line indicates the S-velocity resulting from the average of the S-slowness, as used in Middya et al. (1986).

(a) (b)

Figure 6. Same representation as in Fig. 5 for VTI structure with a cone of aperture angle θ0.
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Let us now comment the Figs. 5 and 6. In both cases, the velocities of shear and longitudinal220

waves have been reported for physical properties of ice and zinc assuming a girdle texture with

single zenith angle θ0 (Fig. 3) and a clustered texture with aperture angle θ0 (Fig. 5), respectively.

Black lines correspond to the velocities V eff
P and V eff

S and as previously said, a unique velocity V eff
S

is found from the effective medium theory, by construction (we say here by construction because

the effective medium ensures the expected anisotropy at large scale since the effective elastic tensor225

is averaged). This is consistent with the considered VTI symmetry and the observed variations of

the velocities with θ0 are typically the kind of data that will be used in the inverse problem to get

information about the variation of the texture with depth in borehole sonic logging (Maurel et al.,

2015). We use these velocities as reference velocities in the following.

The plain red lines refer to the velocities V av
P and (V av

SH ,V
av
SV ) extracted from the slowness average230

method. We have already commented that the two shear velocities obtained are unphysical since a

unique shear velocity is expected. The discrepancy observed is significant for the shear velocities

(with respect to the reference value, in black) both in the case of ice and zinc in Figs. 5 and 6. For the

longitudinal velocity, the discrepancy is incidental in the case of ice but may become more signifi-

cant, as illustrated here for zinc. This is why the case of zinc has been reported (zinc single crystals235

being more elastically anisotropic than ice single crystals, the discrepancies are more noticeable).

The two different shear velocities should have been observed in Diez and Eisen (2015) where the

average velocity method is used for cone textures, using numerical averages (note an ambiguity in

the definitions of the averages in the Eqs. (12) and (13) in this reference, where the sinθ seems to

be missing for averaging over the spherical angles). Possibly, the authors use an additional average240

for the shear velocity, as suggested by Middya et al. (1986), namely VS = 1/2(VSV +VSH). This

latter average is unjustified and it is not expected that it has to be close to the reference value (black

curves). In Figs. 5 and 6, these velocities VS are reported in dotted red lines. Although these lines

are quite close from the reference one for ice, they remain significantly far away for zinc. Besides, it

is not guaranteed that higher errors would not be obtained for other textures.245

4 Comment on Bennett’s derivation of the velocities in the usual clustered texture

In this section, we analyze the derivation proposed by Bennett to get the velocities in clustered

polycrystal (Bennett, 1968). Basically, the error in Bennet’s calculation lies in the expression of the

sound speed in single crystal, that is at the scale of the grain. Then, the average is correctly conduced

but starting from unphysical velocities. Remember that the velocities in a single crystal is given by250

Eqs. (19), and they depend only on the angle θ between the wavenumber k and the direction ĉ of the

c-axis.
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4.1 Reporting Bennet’s calculations

To be clear, the error in Bennett’s calculation appears in the fact that he obtains at some point the

following expressions of the sound velocities for wave propagation in single ice255

Bennett’s unphysical expressions for the sound velocities in single crystal



1
VSH

= SSH = (a2 + b2)− 8b2 sin2ϕcos2 θ sin2 θ− 2b3 cos2ϕsin2 θ,

1
VSV

= SSV = (a2 + b2)− 8b2 cos2ϕcos2 θ sin2 θ− 2b3 sin2ϕsin2 θ.

(31)

see Eqs. (5-15) in Bennett (1968), and here we have adapted his notations to ours. These expres-

sions are found in the case where the wave propagates along e3 with a c-axis along the direction

ĉ = (sinθ cosϕ,sinθ sinϕ,cosθ), see Fig. 7(b). These expressions do not agree with Eqs. (19) and

beside, the dependance of VSV and VSH on ϕ is unphysical, as previously said: it is clear that the260

angle θ is the unique angle that is needed, and in fact, the unique angle that can be defined, see

Fig. 2. Bennett did not publish his calculations. They can be found in his thesis but for the sake of

completeness, we report below the main steps of these calculations (also the correspondances with

Bennett’s notations are given).

Bennett starts with the slownesses in a single crystal, called S = 1/V and which are given by265





S1 = SP ' a1− b1 cos4θ− c1 cos2θ,

S2 = SSV ' a2 + b2 cos4θ,

S3 = SSH ' a3 + b3 cos2θ.

(32)

The above expressions are correct, although approximate and they are close to the Thomsen ap-

proximations (Thomsen, 1986), see also a discussion in Maurel et al. (2015). They correspond to

approximated forms of the inverses of the velocities in single crystals given in Eqs. (19).

In the above expressions, θ (the usual azimuthal angle in spherical coordinates) is the angle (k, ĉ)270

because of the chosen frame, see Fig. 7(b). Bennett decided to use a different frame where neither k

nor ĉ are along e3, and he denoted θ̂ ≡ (k, ĉ). The story should end there: it is sufficient to replace θ

by θ̂ in Eqs. (32) to get the slowness expressions. This is not what Bennett did, and this is the source

of the error in his result.

The new multiple angles in Fig. 7(a) are defined as follows σ ≡ (k,e3), θ̂ ≡ (k, ĉ) and θ = (ĉ,e3);275

also, the angle ϕ̂ is defined as the angle between the planes (k,e3) and (k, ĉ) (this angle is not

represented in Fig. 7(a), it will be equivalent and more consistent to define it between the two vectors

normal to these planes).

It is straightforward to remark that for σ = 0, we recover θ = θ̂ and it is essential that Eqs. (32)

are recovered in this case.280
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Figure 7. (a) System of angles used in Bennett’s calculations. ĉ is given by (ϕ,θ) and k is given by σ,

being otherwise in the (e1,e3) plane. The extra angle θ̂ denotes the angle between k and ĉ, thus cos θ̂ =

sinσ cosϕsinθ+cosσ cosθ. (b) Particular case of the Bennett configuration, for σ = 0; in this case, θ̂ = θ.

An ensemble of relations between the different angles are then derived by Bennett, among which

cos θ̂ = sinσ cosϕsinθ+ cosσ cosθ and




sin2 ϕ̂=
sin2ϕsin2 θ

sin2 θ̂
,

cos2 ϕ̂=
(cosσ cosϕsinθ− sinσ cosθ)2

sin2 θ̂

(33)

and these relations are correct, notably, at this stage, if σ = 0, then θ̂ = θ and ϕ̂= ϕ.

The next step is the source of the error. It is said that the slowness of the wave depends on ϕ̂285

following




SP = S1,

SSV = S2 cos2 ϕ̂+S3 sin2 ϕ̂,

SSH = S2 sin2 ϕ̂+S3 cos2 ϕ̂.

(34)

This is announced by Bennett as an intuitive approximation. Obviously (see Eqs. (33)), ϕ̂ can vary

while θ̂ remains constant, from which the above equations pretend that the velocity of the shear

waves depend on something else than on θ̂ only, and this is incorrect, from Eq. (32). More explicitly,290

using σ = 0 (thus, θ̂ = θ, ϕ̂= ϕ) in the Eq. (34) and using Eqs. (32)-(33), we get the Eqs. (31) which

contain clearly a mistake.

Starting from these false expressions of the shear velocities for single crystals, Bennett derived

the averaged slownesses by means of an average equivalent to an average over ϕ and θ in Eqs. (31).

In fact by construction of the weighted forms in the Eq. (34) (and the same for Eq. (31)), the same295

value for the two averaged slownesses SSH and SSV is obtained. Unfortunately, these expressions

are not reliable.
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5 Conclusions

In this paper, we have proposed a critical analysis of the velocity, or slowness, average methods as

recently used in the post treatment of the velocities deduced from borehole sonic logging measure-300

ments. Although this method is justified in particular cases, as the wave propagation in stratified

media (and it is used for seismic waves in this quasi one-dimensional context), it presents signif-

icant pitfalls in the context of the propagation in ice polycrystals. Basically, the slowness average

method is based on the qualitative argument that the times of flight of the waves in each grains can

be added, and this vision is based on the ray theory. Ray theory means high frequency, namely the305

wave propagates, between two interfaces, over large distances compared to its wavelength (Kohnen,

1974; Blankenship et al., 1987). This is not the case in sonic logging measurements, with elastic

wavelengths of the order of a few tens of centimeters while the typical grain sizes range from a

few millimeters to tens of centimeters. Qualitatively, good trends in the variations of the velocities

are obtained and possibly it is sufficient for crude predictions, as the presence of liquid in rocks310

or the detection of rock cracks. In the case of a prediction in a change of ice texture with depths,

the variations in the elastic velocities are weak and care has to be taken not to introduce additional

uncertainties because of a too crude approximation in the theoretical model. This is why a reliable

approach, based on the calculation of an effective medium, has to be retained. Such approach prop-

erly describes the modifications in the elastic velocities associated with ice texture (Maurel et al.,315

2015), and it can be used for further inversion of sonic logger data extracted along ice cores.
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